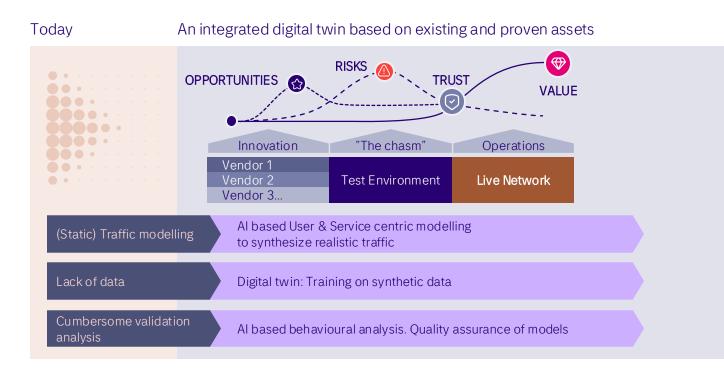
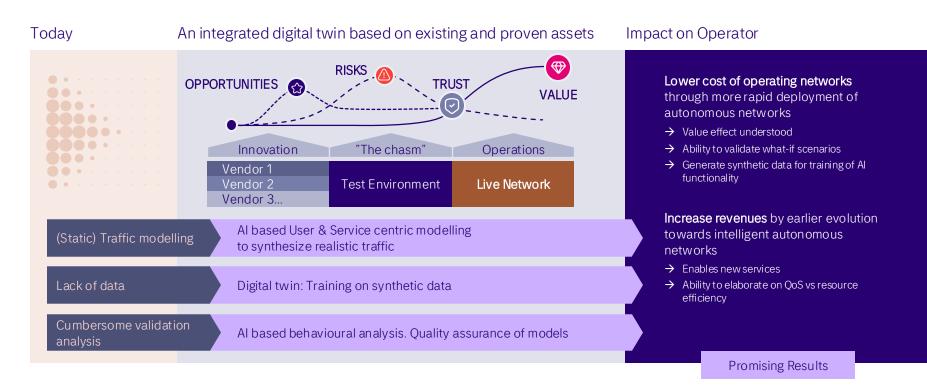
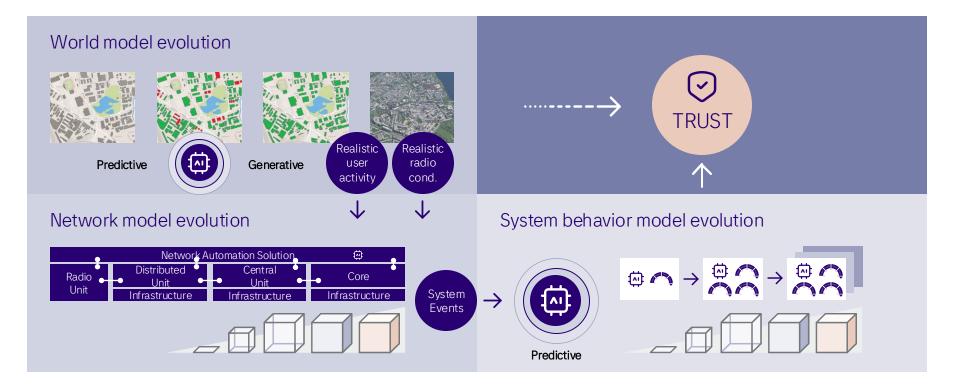
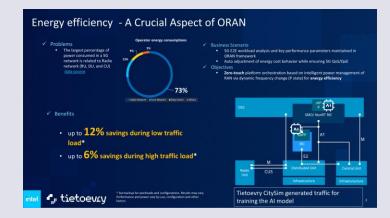

Building CitySim

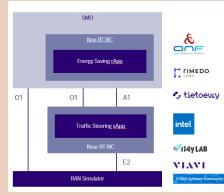
Digital twin for AI validation in Network management


denys.frolov@tietoevry.com arne.lundback@tietoevry.com johan.forsman@tietoevry.com tobias.sundqvist@tietoevry.com martin.bjorklund@tietoevry.com




Summary: A unique validation method for intelligent and autonomous networks


Summary: A unique validation method for intelligent and autonomous networks



Leverage on Digital Twins and AI to realize the solution A trinity of models in celestial harmony with AI/ML

We are good at custom digital twins' development and integration

- Demo led by ONF to showcase energy savings controlled by rApps/xApps
- Showcased at Fuyz in Madrid October 9th 11th
- <u>RimedoLabs</u> energy saving <u>rApp</u> controls cells and power-off is possible. <u>xApp</u> controls traffic steering to direct traffic to other cells
 - Built on ONF SD-RAN software
 - Tietoevry contributed integration services
 - · Development of O1 interfaces
 - Modification of xApp
 - Testing
- Ongoing work with next phase involving an extended set of partners

RECAL

Reliable Capacity Provisioning and Enhanced Remediation for Distributed Cloud Applications

Next generation of agile and optimized cloud computing systems

Services are elastically instantiated and provisioned close to the users that actually need them via self-configurable cloud computing systems.

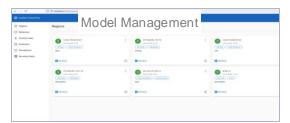
Machine learning and simulation techniques for provision of cloud services

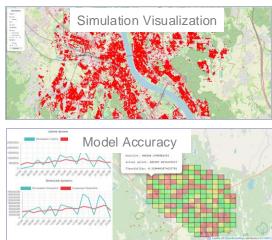
Applied to the following use cases

- · Telco system for wireless & wireline
- Smart city

RECAP Models

· Big data analytics


THIS PROJECT HAS RECEIVED FUNCING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NUMBER 73266



Demo Introduction – Stadium Scenarios

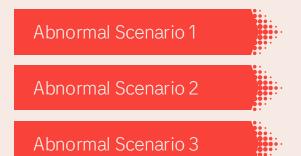
	 Users entering and leaving Serving Area (cells) according to model rApp monitors Serving Area load (PRB usage) 	Validator	
Normal Scenario	 Load in Serving Area: Load is below threshold → rApp selects cell according to priority → rApp enables cell barring Traffic steering moves users to other cells Barred cell is empty → rApp turns off cell 	·•••••••••••••••••••••••••••••••••••••	continuously checks rApp behavior and detects no anomaly
Abnormal Scenario 1	Low load in Serving Area: Barred cell still have users \rightarrow rApp turns off cell too early		Validator detects anomaly
Abnormal Scenario 2	Low load in Serving Area: Load below threshold \rightarrow rApp does not turn off cells		Validator detects anomaly
Abnormal Scenario 3	High load in Serving Area: Load above threshold \rightarrow rApp does not turn on cell		Validator detects anomaly

Demo: CitySim

🛃 e2 [Banyuperio] - Oracle VM VirtualBox 🕴 Firefox Web Browser 🔻 ctivities 🔀 citysim_simulation - Air/🖂 🚳 localhost:3000/ CitySim control flow × CitySim control flow CitySim Webclient CitySim control flow × + ē ← → C O D localhost:3000 Map Options Citizens ✔ show heatmap Cars ✔ show Cell Stations ✓ show cell coverage cells heatmap AU UL DL **Bps** Rates д heatmap • ULO DL Recenter OBS 30.1.2 - Profile: Untitled - Scenes: Untitled File Edit View Docks Profile Scene Collection Tools Help OD. source selected

🖏 tietoevry 👘 Public

Demo: Normal Scenario



Demo: Abnormal Scenario 1

Demo Summary – Scenarios

Normal Scenario

Digital Twin

- Serving area with 10 cells
- 10 000 users

Validator detected all anomalies in run-time

The second second second second second

- 100% of synthetic anomalies detected
- Detection within 0.5 second

Validator approved the "normal" scenario with no false negatives.

- Effort for adaption: 24 hours (based on existing solution)
- Time for training: 15 seconds on laptop (34 parameters per serving area)

Q&A time

0

Amount access and subscriptum and minimum burners of constances accessing and Thank you for your attention

Let's build TRUST in AI together

Tietoevry Create, Telecom Practice denys.frolov@tietoevry.com arne.lundback@tietoevry.com johan.forsman@tietoevry.com tobias.sundqvist@tietoevry.com martin.bjorklund@tietoevry.com

Backup slides

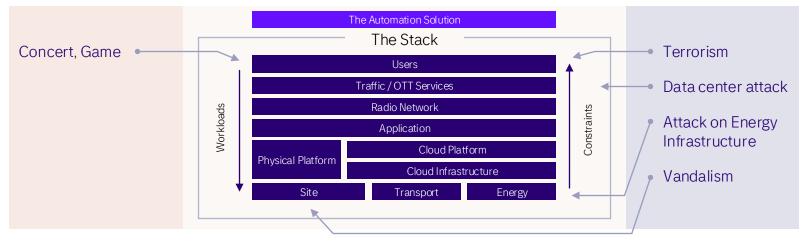
CitySim (as a digital twin)

Modelling

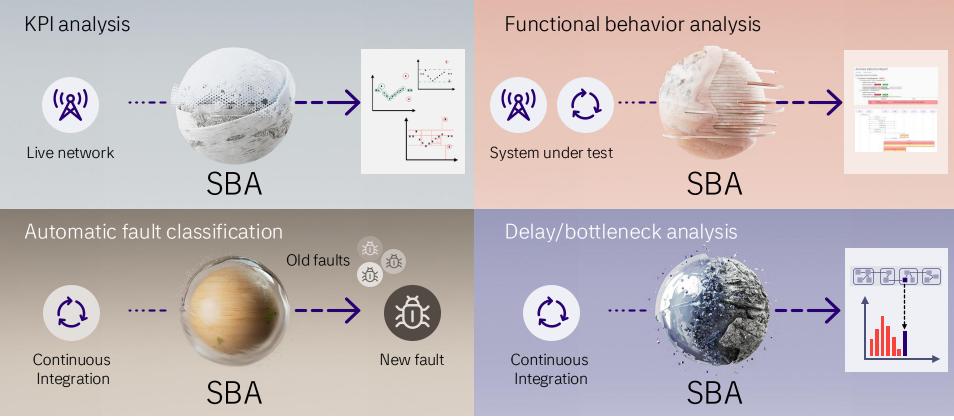
ctual unlink: 19249 many 0 · Sealution Model Simulation Simulation Model Management Control Visualization Accuracy (i) **B** artista (i) Distant Data Collection & Analytics Simulation Core Model Validator Population **Trust in Models** Population Model Event Model World Model Thing Model Household distribution Service Model Activity Model Household Model Mobility Mode Service Usage Models' KPIs (Space & Time) **User Mobility** Traffic Model

Simulation

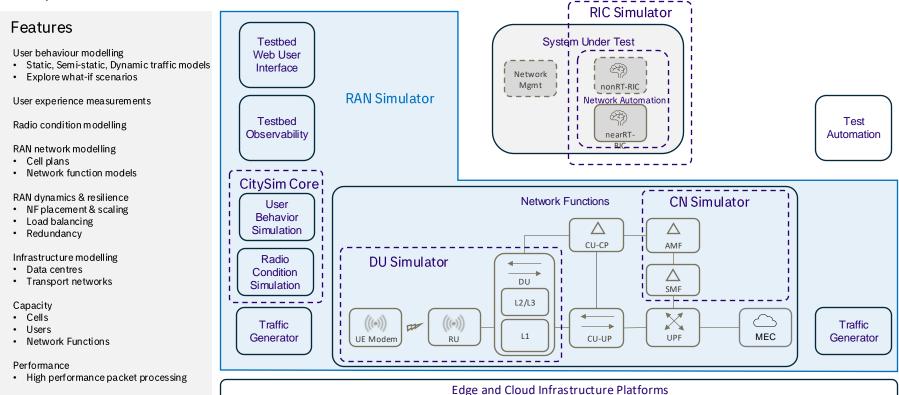
Model Validation


What-If-Scenarios

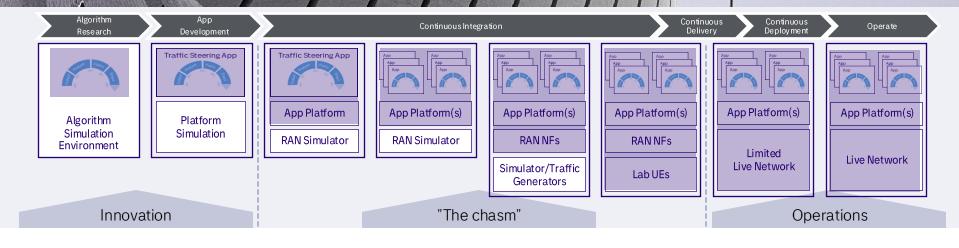
Positive Events



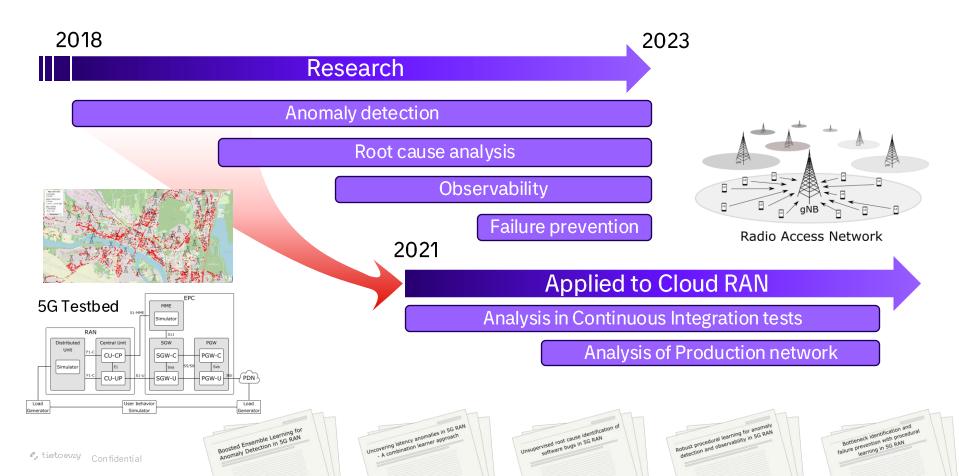
Negative Events



Ongoing projects – System behavior analysis



RAN Simulator realized with TietoEVRY 5G Testbed Component Overview


, tietoevry Confidential

Building trust require realistic dynamics, and what-if scenarios to be captured

System behavior analysis (SBA)

Traditional log analysis

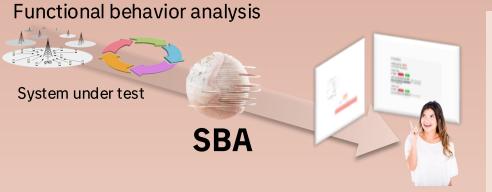
- Manually analysis of large logs.
- Trouble shooters have knowledge of a small part of the system.
- Little or no visibility of the system behavior.
- Experts are needed to analyze and take accurate routing decisions.

System Behavior Analysis (SBA)

ML assisted troubleshooting

SBA learns the behavior from logs and assists end-users in their troubleshooting

Ongoing projects – KPI analysis


Problem

- KPI's are validated manually or by rule based systems.
- Difficult to understand the complex dependencies between KPIs

- Unsupervised Help end-users to find KPI that are deviating. The nondeviating KPI periods can be used to learn the successful functional behavior.
- **Supervised** Learn characteristics from KPI/metrics when functional behavior is normal. Predict behavior on new test data to help end-users to identify the type of deviations.

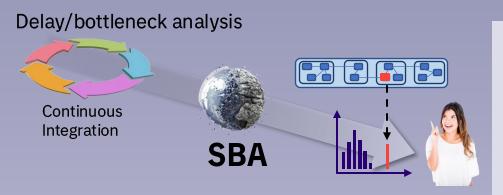
Ongoing projects – Functional behavior analysis

Problem

- Large systems require long time in manually analyzing the system logs.
- Most end users only know a part of the system.

- ML algorithms learn the functional behavior of the system.
- Identifies what parts of the system that has deviations in both successful and unsuccessful scenarios.
- Augments the troubleshooters to take more accurate routing decisions and faster find the root cause of faults.

Ongoing projects – Automatic fault classification


Problem

• Some faults occur several times and end-users spend time in analyzing the fault several time.

- ML algorithms compare the deviations found in the functional behavior analysis.
- Faults can automatically be grouped together.
- End-users can focus on new faults and reduce wasted troubleshooting time.
- Faster to find test runs that has the same fault.

Ongoing projects – Delay/bottleneck analysis

Problem

- Difficult to find where small delays and bottlenecks occur in a large system.
- Delays can be occasional.

- ML algorithms learn the delays in the system by analyzing the functional behavior.
- Automatically identifies where abnormal delays occur between test runs.
- Improves the quality of the product by findings delays that rule-based tests cannot find.
- Decreases the lead time in troubleshooting.

Build TRUST in AI with us

Let's continue with in-booth presentation

Tietoevry Create, Telecom Practice denys.frolov@tietoevry.com arne.lundback@tietoevry.com johan.forsman@tietoevry.com tobias.sundqvist@tietoevry.com martin.bjorklund@tietoevry.com

CitySim Screenshots

O D localhost:3000

← → C

Citizens

Cars

✓ show

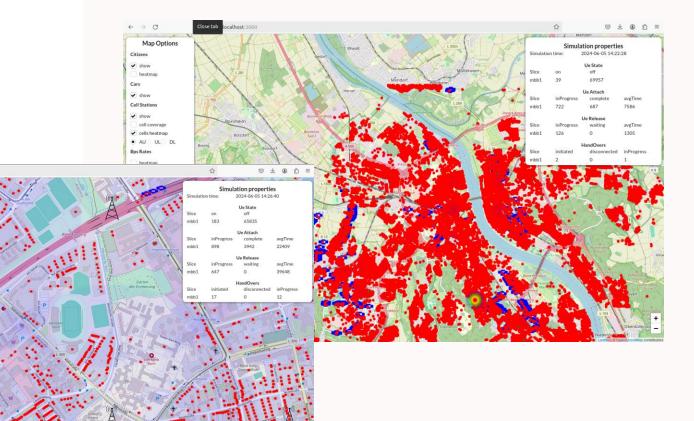
✓ show

✓ show

Bps Rates

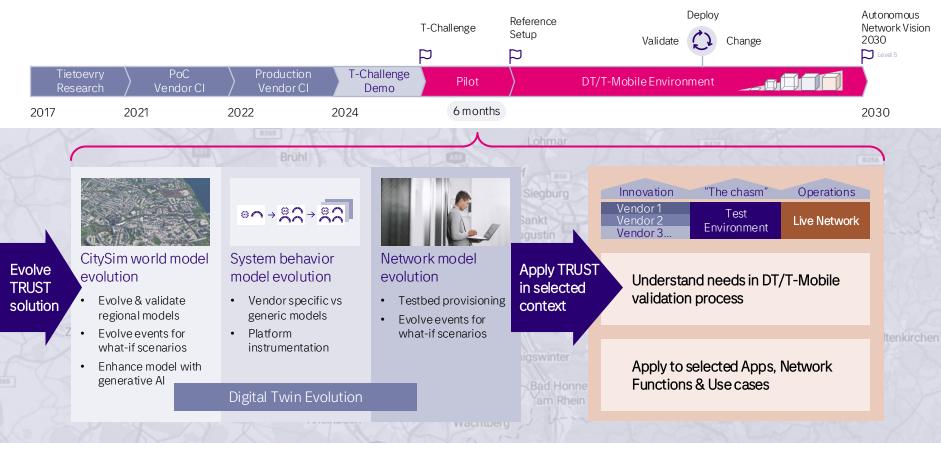
✓ cell coverage

. AU UL DI


heatmap
 UL DL
 Recenter

cells heatmap

Cell Stations


heatmap

Map Options

T-Challenge clean-up slides

Support your journey towards the Autonomous Networks

Call to action: Let's take on a new challenge together

In-booth demo

Let's build TRUST together in...

Purposeful and responsible Al	5G Slicing & beyond			
TRUST in energy	Industrial IoT			^{●●} 1 ST PLACE ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
			•*** : 2 ND PLACE ••••• €75,000	
	CitySim for Fibre to Home	•**** 3 RD PLACE ••••• €35,000		
optimization	SPECIAL AWARD €25,000			